Send to

Choose Destination
Drug Metab Dispos. 2012 Aug;40(8):1588-95. doi: 10.1124/dmd.112.045583. Epub 2012 May 16.

Potent inhibition of human sulfotransferase 1A1 by 17α-ethinylestradiol: role of 3'-phosphoadenosine 5'-phosphosulfate binding and structural rearrangements in regulating inhibition and activity.

Author information

Department of Pharmacology and Toxicology, 1670 University Blvd., University of Alabama at Birmingham, Birmingham, AL 35294, USA.


Sulfotransferase (SULT) 1A1 is the major drug/xenobiotic-conjugating SULT isoform in human liver because of its broad substrate reactivity and high expression level. SULT1A1 sulfates estrogens with low micromolar K(m) values consistent with its affinity for sulfation of many small phenolic compounds. Binding studies showed the unexpected ability of 17α-ethinylestradiol (EE2) to bind and inhibit SULT1A1 activity toward p-nitrophenol and β-naphthol at low nanomolar concentrations, whereas EE2 was not sulfated until significantly higher concentrations were reached. EE2 had a K(i) of 10 nM for inhibiting p-nitrophenol and β-naphthol sulfation and inhibited 17β-estradiol (E2) sulfation in intact human MCF-7 breast cancer cells with a K(i) of 19 nM. In contrast, the K(m) for EE2 sulfation by SULT1A1 was 700 nM. The K(d) for EE2 binding of pure SULT1A1 was 0.5 ± 0.15 μM; however, the K(d) for EE2 binding to the SULT1A1-PAP complex was >100-fold lower (4.3 ± 1.7 nM). The K(d) for E2 binding to SULT1A1 changed from 2.3 ± 0.9 to 1.2 ± 0.56 μM in the presence of PAP. Docking studies with E2 indicate that E2 binds in a competent orientation in the resolved structure of SULT1A1 in the both presence and absence of 3'-phosphoadenosine 5'-phosphosulfate (PAPS). However, EE2 binds in a catalytically competent orientation in the absence of PAPS but in a noncompetent orientation via formation of a charge interaction with Tyr108 if PAPS is bound first. In conclusion, EE2 is a potent inhibitor, but not a substrate, of SULT1A1 at low nanomolar concentrations, indicating the possibility of drug-drug interactions during contraceptive therapy.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center