Send to

Choose Destination
Arthroscopy. 2012 Sep;28(9):1197-205. doi: 10.1016/j.arthro.2012.02.015. Epub 2012 May 15.

A biomechanical comparison of tendon-bone interface motion and cyclic loading between single-row, triple-loaded cuff repairs and double-row, suture-tape cuff repairs using biocomposite anchors.

Author information

Plano Orthopedic Sports Medicine and Spine Center, Plano, Texas, U.S.A.



To compare tendon-bone interface motion and cyclic loading in a single-row, triple-loaded anchor repair with a suture-tape, rip-stop, double-row rotator cuff repair.


Using 18 human shoulders from 9 matched cadaveric pairs, we created 2 groups of rotator cuff repairs. Group 1 was a double-row, rip-stop, suture-tape construct. Group 2 was a single-row, triple-loaded construct. Before mechanical testing, the supraspinatus footprint was measured with calipers. A superiorly positioned digital camera optically measured the tendon footprint motion during 60° of humeral internal and external rotation. Specimens were secured at a fixed angle not exceeding 45° in reference to the load. After preloading, each sample was cycled between 10 N and 100 N for 200 cycles at 1 Hz, followed by destructive testing at 33 mm/s. A digital camera with tracking software measured the repair displacement at 100 and 200 cycles. Ultimate load and failure mode for each sample were recorded.


The exposed anterior footprint border (6.5% ± 6%) and posterior footprint border (0.9% ± 1.7%) in group 1 were statistically less than the exposed anterior footprint border (30.3% ± 17%) and posterior footprint border (29.8% ± 14%) in group 2 (P = .003 and P < .001, respectively). The maximal internal rotation and external rotation tendon footprint displacements in group 1 (1.6 mm and 1.4 mm, respectively) were less than those in group 2 (both 3.6 mm) (P = .007 and P = .004, respectively). Mean displacement after 100 cycles for group 1 and group 2 was 2.0 mm and 3.2 mm, respectively, and at 200 cycles, mean displacement was 2.5 mm and 4.2 mm, respectively (P = .02). The mean ultimate failure load in group 1 (586 N) was greater than that in group 2 (393 N) (P = .02). The suture-tendon interface was the site of most construct failures.


The suture-tape, rip-stop, double-row rotator cuff repair had greater footprint coverage, less rotational footprint displacement, and a greater mean ultimate failure load than the triple-loaded, single-row repair on mechanical testing. No double-row or single-row constructs showed 5 mm of displacement after the first 100 cycles. The most common failure mode for both constructs was suture tearing through the tendon.


Differences in cuff fixation influence rotational tendon movement and may influence postoperative healing. Stronger repair constructs still fail at the suture-tendon interface.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center