Format

Send to

Choose Destination
Plant Cell Environ. 2012 Dec;35(12):2087-103. doi: 10.1111/j.1365-3040.2012.02538.x. Epub 2012 Jun 12.

Variable mesophyll conductance revisited: theoretical background and experimental implications.

Author information

1
State Key Laboratory of Hybrid Rice Research, Chinese Academy of Sciences, Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China. thalecress+p@gmail.com

Abstract

The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we show that estimates of g(m) are influenced by the amount of respiratory and photorespiratory CO(2) from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO(2) and oxygen sensitivity of g(m) that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO(2) release to chloroplast CO(2) uptake. We show that this effect (1) can bias the estimation of the CO(2) photocompensation point and non-photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and g(m) . We further show that the amount of photo(respiratory) CO(2) that is refixed by Rubisco can be directly estimated through measurements of g(m) .

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center