Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8652-7. doi: 10.1073/pnas.1206280109. Epub 2012 May 15.

Heterotrimer-independent regulation of activation-loop phosphorylation of Snf1 protein kinase involves two protein phosphatases.

Author information

  • 1Department of Genetics and Development, Columbia University, New York, NY 10032, USA.


The SNF1/AMP-activated protein kinases are αβγ-heterotrimers that sense and regulate energy status in eukaryotes. They are activated by phosphorylation of the catalytic Snf1/α subunit, and the Snf4/γ regulatory subunit regulates phosphorylation through adenine nucleotide binding. In Saccharomyces cerevisiae, the Snf1 subunit is phosphorylated on the activation-loop Thr-210 in response to glucose limitation. To assess the requirement of the heterotrimer for regulated Thr-210 phosphorylation, we examined Snf1 and a truncated Snf1 kinase domain (residues 1-309) that has partial Snf1 function. Snf1(1-309) does not interact with the β and Snf4/γ regulatory subunits, and its activity was independent of them in vivo. Phosphorylation of both Snf1 and Snf1(1-309) increased in response to glucose limitation in wild-type cells and in cells lacking β- and Snf4/γ-subunits. These results indicate that glucose regulation of activation-loop phosphorylation can occur by mechanism(s) that function independently of the regulatory subunits. We further show that the Reg1-Glc7 protein phosphatase 1 and Sit4 type 2A-like phosphatase are largely responsible for dephosphorylation of Thr-210 of Snf1(1-309). Together, these findings suggest that these two phosphatases mediate heterotrimer-independent regulation of Thr-210 phosphorylation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center