Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8710-5. doi: 10.1073/pnas.1117255109. Epub 2012 May 14.

Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy.

Author information

1
Department of Pediatrics, University of California, San Francisco, CA 94143, USA.

Abstract

Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAF(T1799A) encoding BRAF(V600E)) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAF(V600E) expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAF(V600E) inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAF(V600E) mutation and CDKN2A deficiency.

PMID:
22586120
PMCID:
PMC3365162
DOI:
10.1073/pnas.1117255109
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center