Send to

Choose Destination
J Struct Biol. 2012 Aug;179(2):152-60. doi: 10.1016/j.jsb.2012.05.002. Epub 2012 May 10.

Chaperone networks in protein disaggregation and prion propagation.

Author information

Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany.


The oligomeric AAA+ chaperones Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 cooperate with cognate Hsp70/Hsp40 chaperone machineries in the reactivation of aggregated proteins in E. coli and S. cerevisiae. In addition, Hsp104 and Hsp70/Hsp40 are crucial for the maintenance of prion aggregates in yeast cells. While the bichaperone system efficiently solubilizes stress-generated amorphous aggregates, structurally highly ordered prion fibrils are only partially processed, resulting in the generation of fragmented prion seeds that can be transmitted to daughter cells for stable inheritance. Here, we describe and discuss the most recent mechanistic findings on yeast Hsp104 and Hsp70/Hsp40 cooperation in the remodeling of both types of aggregates, emphasizing similarities in the mechanism but also differences in the sensitivities towards chaperone activities.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center