Format

Send to

Choose Destination
See comment in PubMed Commons below
Sensors (Basel). 2009;9(3):2117-33. doi: 10.3390/s90302117. Epub 2009 Mar 23.

Metabolic discrimination of select list agents by monitoring cellular responses in a multianalyte microphysiometer.

Author information

1
Department of Chemistry, Vanderbilt University, VU Station B. Nashville, TN 37235, USA; E-Mails: seklund@latech.edu ; r.snider@vanderbilt.edu.

Abstract

Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP) that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production) in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

KEYWORDS:

Toxin; biosensors; biotoxin; microphysiometry

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
    Loading ...
    Support Center