Send to

Choose Destination
Crit Rev Food Sci Nutr. 1990;29(4):237-53.

Glycolysis and related reactions during cheese manufacture and ripening.

Author information

Department of Food Chemistry, University College, Cork, Ireland.


Fermentation of lactose to lactic acid by lactic acid bacteria is an essential primary reaction in the manufacture of all cheese varieties. The reduced pH of cheese curd, which reaches 4.5 to 5.2, depending on the variety, affects at least the following characteristics of curd and cheese: syneresis (and hence cheese composition), retention of calcium (which affects cheese texture), retention and activity of coagulant (which influences the extent and type of proteolysis during ripening), the growth of contaminating bacteria. Most (98%) of the lactose in milk is removed in the whey during cheesemaking, either as lactose or lactic acid. The residual lactose in cheese curd is metabolized during the early stages of ripening. During ripening lactic acid is also altered, mainly through the action of nonstarter bacteria. The principal changes are (1) conversion of L-lactate to D-lactate such that a racemic mixture exists in most cheeses at the end of ripening; (2) in Swiss-type cheeses, L-lactate is metabolized to propionate, acetate, and CO2, which are responsible for eye formation and contribute to typical flavor; (3) in surface mold, and probably in surface bacterially ripened cheese, lactate is metabolized to CO2 and H2O, which contributes to the increase in pH characteristic of such cheeses and that is responsible for textural changes, (4) in Cheddar and Dutch-type cheeses, some lactate may be oxidized to acetate by Pediococci. Cheese contains a low level of citrate, metabolism of which by Streptococcus diacetylactis leads to the production of diacetyl, which contributes to the flavor and is responsible for the limited eye formation characteristic of such cheeses.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center