Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Cell Biol. 2012 Aug;91(8):654-61. doi: 10.1016/j.ejcb.2012.03.004. Epub 2012 May 4.

15-Deoxy-Δ(12,14)-prostaglandin J(2) attenuates the biological activities of monocyte/macrophage cell lines.

Author information

  • 1Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.

Abstract

Monocytes/macrophages link the innate and adaptive immune systems, and in inflammatory disorders their activation leads to tissue damage. 15-Deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has garnered much interest because it possesses anti-inflammatory properties in a number of experimental models. However, whether it regulates monocytes/macrophage pathophysiology is still unknown. This study was designed to examine the effects of 15d-PGJ(2) on the phagocytosis, proliferation and inflammatory cytokines generation in mouse monocyte/macrophage cell line RAW264.7 and J774A.1 cells upon lipopolysaccharide challenge. Our results showed that 15d-PGJ(2) inhibited the phagocytic activity and cell proliferation in a dose-dependent manner, and suppressed proinflammatory cytokines expression, such as tumor necrosis factor-α, transforming growth factor-β1, interleukin-6, and monocyte chemotactic protein-1. These effects were independent of PPARγ, because PPARγ agonist (troglitazone or ciglitazone) and PPARγ antagonist (GW9662) did not affect these activities mentioned above in cells. Treatment of 15d-PGJ(2) also did not modulate expression and distribution of PPARγ. However, these effects of 15d-PGJ(2) were abrogated by antioxidant N-acetylcysteine. Moreover, treatment of 15d-PGJ(2) induced a significant increase in reactive oxygen species production in RAW264.7 and J774A.1 cells. In conclusion, 15d-PGJ(2) attenuates the biological activities of mouse monocyte/macrophage cell line cells involving oxidative stress, independently of PPARγ. These data further underline the anti-inflammation potential of 15d-PGJ(2).

Copyright © 2012 Elsevier GmbH. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk