Send to

Choose Destination
Science. 2012 May 4;336(6081):601-4. doi: 10.1126/science.1216882.

Multidimensional optimality of microbial metabolism.

Author information

Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland.


Although the network topology of metabolism is well known, understanding the principles that govern the distribution of fluxes through metabolism lags behind. Experimentally, these fluxes can be measured by (13)C-flux analysis, and there has been a long-standing interest in understanding this functional network operation from an evolutionary perspective. On the basis of (13)C-determined fluxes from nine bacteria and multi-objective optimization theory, we show that metabolism operates close to the Pareto-optimal surface of a three-dimensional space defined by competing objectives. Consistent with flux data from evolved Escherichia coli, we propose that flux states evolve under the trade-off between two principles: optimality under one given condition and minimal adjustment between conditions. These principles form the forces by which evolution shapes metabolic fluxes in microorganisms' environmental context.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center