Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr. 2012 Jun;142(6):981-9. doi: 10.3945/jn.111.157198. Epub 2012 Apr 25.

Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes.

Author information

1
University of Munich, Munich,Germany.

Abstract

Phytosterol-enriched foods are increasingly marketed to lower cholesterol levels and atherosclerosis in the general population. Phytosterols reduce cholesterol absorption, but the molecular mechanism is controversial. We therefore investigated the phytosterol effects on cholesterol metabolism in human enterocyte, hepatocyte, and macrophage models relevant for sterol absorption, reverse transport, and excretion. Isomolar sitosterol (50 μmol/L) was less effectively taken up by enterocytes than cholesterol but suppressed apical cholesterol uptake by 50% (P < 0.01) and basolateral secretion by two-thirds (P < 0.01) whether added in micelles or ethanol or complexed to cyclodextrin. In contrast, enterocytes handled nanomolar (3)H-sitosterol similarly to cholesterol. Enterocytes selectively oxidized all sterols to 27-hydroxy- and 27-carboxy-sterols. Conversion rates were much lower for sitosterol (0.05 ± 0.02 nmol/mg protein) and campesterol (0.48 ± 0.10) compared with cholesterol (3.73 ± 0.60) (P < 0.001). 27-Hydroxycholesterol (27OH-C) activated liver-X-receptor alpha (LXRα) (P < 0.01) and stimulated ATP-binding cassette transporter (ABC) A1 expression (P < 0.001) and basolateral systemic cholesterol secretion from enterocytes (P < 0.05). In co-incubations, phytosterols inhibited 27OH-C generation by sterol 27-hydroxylase (P < 0.001) and reduced LXRα-mediated ABCA1 expression (P < 0.01) and basolateral systemic cholesterol secretion. In contrast, ABCG8 transcription and apical sterol resecretion was unchanged by LXRα activation in human enterocytes. Exogenous LXRα agonists reverted sterol selectivity and phytosterol cholesterol interaction. Due to constitutive apical expression of ABCG5/G8 and LXRα-enhanced basolateral expression of ABCA1 in enterocytes, interference of phytosterols with the generation of the dominating LXRα-agonist 27OH-C blocks the self-priming component of cholesterol absorption. This local LXRα antagonism of dietary phytosterols contributes to sterol selectivity and reduces fractional cholesterol absorption and preloading of nascent HDL with dietary cholesterol.

PMID:
22535758
DOI:
10.3945/jn.111.157198
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center