Format

Send to

Choose Destination
See comment in PubMed Commons below
Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63. doi: 10.1089/ars.2012.4644. Epub 2012 Jun 5.

Protein-thiol oxidation and cell death: regulatory role of glutaredoxins.

Author information

1
Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.

Abstract

SIGNIFICANCE:

Glutaredoxin (Grx) is the primary enzyme responsible for catalysis of deglutathionylation of protein-mixed disulfides with glutathione (GSH) (protein-SSG). This reversible post-translational modification alters the activity and function of many proteins important in regulation of critical cellular processes. Aberrant regulation of protein glutathionylation/deglutathionylation reactions due to changes in Grx activity can disrupt both apoptotic and survival signaling pathways.

RECENT ADVANCES:

Grx is known to regulate the activity of many proteins through reversible glutathionylation, such as Ras, Fas, ASK1, NFκB, and procaspase-3, all of which play important roles in control of apoptosis. Reactive oxygen species and/or reactive nitrogen species mediate oxidative modifications of critical Cys residues on these apoptotic mediators, facilitating protein-SSG formation and thereby altering protein function and apoptotic signaling.

CRITICAL ISSUES:

Much of what is known about the regulation of apoptotic mediators by Grx and reversible glutathionylation has been gleaned from in vitro studies of discrete apoptotic pathways. To relate these results to events in vivo it is important to examine changes in protein-SSG status in situ under natural cellular conditions, maintaining relevant GSH:GSSG ratios and using appropriate inducers of apoptosis.

FUTURE DIRECTIONS:

Apoptosis is a highly complex, tightly regulated process involving many different checks and balances. The influence of Grx activity on the interconnectivity among these various pathways remains unknown. Knowledge of the effects of Grx is essential for developing novel therapeutic approaches for treating diseases involving dysregulated apoptosis, such as cancer, heart disease, diabetes, and neurodegenerative diseases, where alterations in redox homeostasis are hallmarks for pathogenesis.

PMID:
22530666
PMCID:
PMC3474186
DOI:
10.1089/ars.2012.4644
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc. Icon for PubMed Central
    Loading ...
    Support Center