Format

Send to

Choose Destination
Antimicrob Agents Chemother. 2012 Jul;56(7):3873-8. doi: 10.1128/AAC.06456-11. Epub 2012 Apr 23.

Intrapulmonary distribution and pharmacokinetics of laninamivir, a neuraminidase inhibitor, after a single inhaled administration of its prodrug, laninamivir octanoate, in healthy volunteers.

Author information

1
Translational Medicine and Clinical Pharmacology Department, Daiichi Sankyo Co, Ltd, Shinagawa-ku, Tokyo, Japan.

Abstract

A single inhaled dose of laninamivir octanoate (LO), a long-acting neuraminidase inhibitor, exhibits efficacy in treating both adult and pediatric patients with influenza virus infection. The intrapulmonary pharmacokinetics (PK) of LO and laninamivir, a pharmacologically active metabolite, were investigated by a single-center, open-label study of healthy adult volunteers. Subgroups of five subjects each underwent bronchoalveolar lavage (BAL) 4, 8, 24, 48, 72, 168, and 240 h following a single inhaled administration of LO (40 mg). Plasma, BAL fluid, and alveolar macrophages (AM) were analyzed to determine LO and laninamivir concentrations, using validated liquid chromatography-tandem mass spectrometry methods. The concentrations in epithelial lining fluid (ELF) and AM from the first and subsequent BAL fluid samples were determined separately to explore the drug distribution in airways. Mean laninamivir concentrations in ELF, calculated using the first BAL fluids and BAL fluids collected 4 h after inhaled administration, were 8.57 and 2.40 μg/ml, respectively. The laninamivir concentration in ELF decreased with a longer half-life than that in plasma, and it exceeded the 50% inhibitory concentrations for viral neuraminidases at all time points examined for 240 h after the inhalation. Laninamivir exposure in ELF from the first BAL samples was 3.2 times higher than that in ELF from the subsequent BAL fluid samples. ELF concentration profiles of laninamivir support its long-lasting effect for treatment of patients with influenza virus infection by a single inhaled administration.

PMID:
22526307
PMCID:
PMC3393442
DOI:
10.1128/AAC.06456-11
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center