Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Jul 16;61(4):1213-25. doi: 10.1016/j.neuroimage.2012.04.011. Epub 2012 Apr 14.

Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures.

Author information

1
Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.

Abstract

The human cerebellum is a heterogeneous structure, and the pattern of resting-state functional connectivity (rsFC) of each subregion has not yet been fully characterized. We aimed to systematically investigate rsFC pattern of each cerebellar subregion in 228 healthy young adults. Voxel-based analysis revealed that several subregions showed similar rsFC patterns, reflecting functional integration; however, different subregions displayed distinct rsFC patterns, representing functional segregation. The same vermal and hemispheric subregions showed either different patterns or different strengths of rsFCs with the cerebrum, and different subregions of lobules VII and VIII displayed different rsFC patterns. Region of interest (ROI)-based analyses also confirmed these findings. Specifically, strong rsFCs were found: between lobules I-VI and vermal VIIb-IX and the visual network; between hemispheric VI, VIIb, VIIIa and the auditory network; between lobules I-VI, VIII and the sensorimotor network; between lobule IX, vermal VIIIb and the default-mode network; between lobule Crus I, hemispheric Crus II and the fronto-parietal network; between hemispheric VIIb, VIII and the task-positive network; between hemispheric VI, VIIb, VIII and the salience network; between most cerebellar subregions and the thalamus; between lobules V, VIIb and the midbrain red nucleus; between hemispheric Crus I, Crus II, vermal VIIIb, IX and the caudate nucleus; between lobules V, VI, VIIb, VIIIa and the pallidum and putamen; and between lobules I-V, hemispheric VIII, IX and the hippocampus and amygdala. These results confirm the existence of both functional integration and segregation among cerebellar subregions and largely improve our understanding of the functional organization of the human cerebellum.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center