Format

Send to

Choose Destination
Semin Cell Dev Biol. 2012 Sep;23(7):738-44. doi: 10.1016/j.semcdb.2012.04.003. Epub 2012 Apr 12.

Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency.

Author information

1
Geriatric Research, Education, and Care Center (GRECC), VA Palo Alto Health Care System, Palo Alto, CA 94304, USA. tthuang@stanford.edu

Abstract

Hippocampus plays an important role in learning and memory and in spatial navigation. Production of new neurons that are functionally integrated into the hippocampal neuronal network is important for the maintenance of functional plasticity. In adults, production of new neurons in the hippocampus takes place in the subgranular zone (SGZ) of dentate gyrus. Neural progenitor/stem cells go through processes of proliferation, differentiation, migration, and maturation. This process is exquisitely sensitive to oxidative stress, and perturbation in the redox balance in the neurogenic microenvironment can lead to reduced neurogenesis. Cranial irradiation is an effective treatment for primary and secondary brain tumors. However, even low doses of irradiation can lead to persistent elevation of oxidative stress and sustained suppression of hippocampal neurogenesis. Superoxide dismutases (SODs) are major antioxidant enzymes for the removal of superoxide radicals in different subcellular compartments. To identify the subcellular location where reactive oxygen species (ROS) are continuously generated after cranial irradiation, different SOD deficient mice have been used to determine the effects of irradiation on hippocampal neurogenesis. The study results suggest that, regardless of the subcellular location, SOD deficiency leads to a significant reduction in the production of new neurons in the SGZ of hippocampal dentate gyrus. In exchange, the generation of new glial cells was significantly increased. The SOD deficient condition, however, altered the tissue response to irradiation, and SOD deficient mice were able to maintain a similar level of neurogenesis after irradiation while wild type mice showed a significant reduction in the production of new neurons.

PMID:
22521481
PMCID:
PMC3410958
DOI:
10.1016/j.semcdb.2012.04.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center