Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7451-6. doi: 10.1073/pnas.1117483109. Epub 2012 Apr 19.

Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.

Author information

1
Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany.

Abstract

Reversible protein phosphorylation is an important and ubiquitous protein modification in all living cells. Here we report that protein phosphorylation on arginine residues plays a physiologically significant role. We detected 121 arginine phosphorylation sites in 87 proteins in the gram-positive model organism Bacillus subtilis in vivo. Moreover, we provide evidence that protein arginine phosphorylation has a functional role and is involved in the regulation of many critical cellular processes, such as protein degradation, motility, competence, and stringent and stress responses. Our results suggest that in B. subtilis the combined activity of a protein arginine kinase and phosphatase allows a rapid and reversible regulation of protein activity and that protein arginine phosphorylation can play a physiologically important and regulatory role in bacteria.

PMID:
22517742
PMCID:
PMC3358850
DOI:
10.1073/pnas.1117483109
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center