Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(4):e34261. doi: 10.1371/journal.pone.0034261. Epub 2012 Apr 13.

PHYRN: a robust method for phylogenetic analysis of highly divergent sequences.

Author information

  • 1Center for Computational Proteomics, The Pennsylvania State University, University Park, Pennsylvania, United States of America.


Both multiple sequence alignment and phylogenetic analysis are problematic in the "twilight zone" of sequence similarity (≤ 25% amino acid identity). Herein we explore the accuracy of phylogenetic inference at extreme sequence divergence using a variety of simulated data sets. We evaluate four leading multiple sequence alignment (MSA) methods (MAFFT, T-COFFEE, CLUSTAL, and MUSCLE) and six commonly used programs of tree estimation (Distance-based: Neighbor-Joining; Character-based: PhyML, RAxML, GARLI, Maximum Parsimony, and Bayesian) against a novel MSA-independent method (PHYRN) described here. Strikingly, at "midnight zone" genetic distances (~7% pairwise identity and 4.0 gaps per position), PHYRN returns high-resolution phylogenies that outperform traditional approaches. We reason this is due to PHRYN's capability to amplify informative positions, even at the most extreme levels of sequence divergence. We also assess the applicability of the PHYRN algorithm for inferring deep evolutionary relationships in the divergent DANGER protein superfamily, for which PHYRN infers a more robust tree compared to MSA-based approaches. Taken together, these results demonstrate that PHYRN represents a powerful mechanism for mapping uncharted frontiers in highly divergent protein sequence data sets.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center