Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2012 Apr 18;32(16):5414-25. doi: 10.1523/JNEUROSCI.0316-12.2012.

Different properties of visual relearning after damage to early versus higher-level visual cortical areas.

Author information

  • 1Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York 14642, USA.


The manipulation of visual perceptual learning is emerging as an important rehabilitation tool following visual system damage. Specificity of visual learning for training stimulus and task attributes has been used in prior work to infer a differential contribution of higher-level versus lower-level visual cortical areas to this process. The present study used a controlled experimental paradigm in felines to examine whether relearning of motion discrimination and the specificity of such relearning are differently influenced by damage at lower versus higher levels of the visual cortical hierarchy. Cats with damage to either early visual areas 17,18, and 19, or to higher-level, motion-processing lateral suprasylvian (LS) cortex were trained to perform visual tasks with controlled fixation. Animals with either type of lesion could relearn to discriminate the direction of motion of both drifting gratings and random dot stimuli in their impaired visual field. However, two factors emerged as critical for allowing transfer of learning to untrained motion stimuli: (1) an intact LS cortex and (2) more complex visual stimuli. Thus, while the hierarchical level of visual cortex damage did not seem to limit the ability to relearn motion discriminations, generalizability of relearning with a damaged visual system appeared to be influenced by both the areas damaged and the nature of the stimulus used during training.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center