Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2012 Apr 13;149(2):307-21. doi: 10.1016/j.cell.2012.02.053.

Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer.

Author information

1
Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.

Abstract

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.

PMID:
22500798
PMCID:
PMC3328787
DOI:
10.1016/j.cell.2012.02.053
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center