Format

Send to

Choose Destination
Biophys J. 2012 Apr 4;102(7):1561-9. doi: 10.1016/j.bpj.2012.03.004. Epub 2012 Apr 3.

Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential.

Author information

1
Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India.

Abstract

Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. Cholesterol, a representative sterol in higher eukaryotic membranes, is known to increase membrane dipole potential. In this work, we explored the effects of immediate (7-DHC and desmosterol) and evolutionary (ergosterol) precursors of cholesterol on membrane dipole potential, monitored by the dual wavelength ratiometric approach utilizing the probe di-8-ANEPPS. Our results show that the effect of these precursors on membrane dipole potential is very different from that observed with cholesterol, although the structural differences among them are subtle. These results assume relevance, since accumulation of cholesterol precursors due to defective cholesterol biosynthesis has been reported to result in several inherited metabolic disorders such as the Smith-Lemli-Opitz syndrome. Interestingly, cholesterol (and its precursors) has a negligible effect on dipole potential in polyunsaturated membranes. We interpret these results in terms of noncanonical orientation of cholesterol in these membranes. Our results constitute the first report on the effect of biosynthetic and evolutionary precursors of cholesterol on dipole potential, and imply that a subtle change in sterol structure can significantly alter the dipolar field at the membrane interface.

PMID:
22500756
PMCID:
PMC3318132
DOI:
10.1016/j.bpj.2012.03.004
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center