Format

Send to

Choose Destination
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3615-28. doi: 10.1167/iovs.11-8847.

Localized glaucomatous change detection within the proper orthogonal decomposition framework.

Author information

1
Hamilton Glaucoma Center, Department of Ophthalmology, University of California San Diego, LaJolla, California 92093, USA.

Abstract

PURPOSE:

To detect localized glaucomatous structural changes using proper orthogonal decomposition (POD) framework with false-positive control that minimizes confirmatory follow-ups, and to compare the results to topographic change analysis (TCA).

METHODS:

We included 167 participants (246 eyes) with ≥4 Heidelberg Retina Tomograph (HRT)-II exams from the Diagnostic Innovations in Glaucoma Study; 36 eyes progressed by stereo-photographs or visual fields. All other patient eyes (n = 210) were non-progressing. Specificities were evaluated using 21 normal eyes. Significance of change at each HRT superpixel between each follow-up and its nearest baseline (obtained using POD) was estimated using mixed-effects ANOVA. Locations with significant reduction in retinal height (red pixels) were determined using Bonferroni, Lehmann-Romano k-family-wise error rate (k-FWER), and Benjamini-Hochberg false discovery rate (FDR) type I error control procedures. Observed positive rate (OPR) in each follow-up was calculated as a ratio of number of red pixels within disk to disk size. Progression by POD was defined as one or more follow-ups with OPR greater than the anticipated false-positive rate. TCA was evaluated using the recently proposed liberal, moderate, and conservative progression criteria.

RESULTS:

Sensitivity in progressors, specificity in normals, and specificity in non-progressors, respectively, were POD-Bonferroni = 100%, 0%, and 0%; POD k-FWER = 78%, 86%, and 43%; POD-FDR = 78%, 86%, and 43%; POD k-FWER with retinal height change ≥50 μm = 61%, 95%, and 60%; TCA-liberal = 86%, 62%, and 21%; TCA-moderate = 53%, 100%, and 70%; and TCA-conservative = 17%, 100%, and 84%.

CONCLUSIONS:

With a stronger control of type I errors, k-FWER in POD framework minimized confirmatory follow-ups while providing diagnostic accuracy comparable to TCA. Thus, POD with k-FWER shows promise to reduce the number of confirmatory follow-ups required for clinical care and studies evaluating new glaucoma treatments. (ClinicalTrials.gov number, NCT00221897.).

PMID:
22491406
PMCID:
PMC3406887
DOI:
10.1167/iovs.11-8847
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center