Format

Send to

Choose Destination
Environ Sci Technol. 2012 May 1;46(9):4701-12. doi: 10.1021/es203440n. Epub 2012 Apr 19.

Improvements to Emergy evaluations by using Life Cycle Assessment.

Author information

1
Public Research Centre Henri Tudor (CRPHT)/Resource Centre for Environmental Technologies (CRTE) - 66 rue de Luxembourg, P.O. Box 144, L-4002 Esch-sur-Alzette - Luxembourg. benedetto.rugani@tudor.lu

Abstract

Life Cycle Assessment (LCA) is a widely recognized, multicriteria and standardized tool for environmental assessment of products and processes. As an independent evaluation method, emergy assessment has shown to be a promising and relatively novel tool. The technique has gained wide recognition in the past decade but still faces methodological difficulties which prevent it from being accepted by a broader stakeholder community. This review aims to elucidate the fundamental requirements to possibly improve the Emergy evaluation by using LCA. Despite its capability to compare the amount of resources embodied in production systems, Emergy suffers from its vague accounting procedures and lacks accuracy, reproducibility, and completeness. An improvement of Emergy evaluations can be achieved via (1) technical implementation of Emergy algebra in the Life Cycle Inventory (LCI); (2) selection of consistent Unit Emergy Values (UEVs) as characterization factors for Life Cycle Impact Assessment (LCIA); and (3) expansion of the LCI system boundaries to include supporting systems usually considered by Emergy but excluded in LCA (e.g., ecosystem services and human labor). Whereas Emergy rules must be adapted to life-cycle structures, LCA should enlarge its inventory to give Emergy a broader computational framework. The matrix inversion principle used for LCAs is also proposed as an alternative to consistently account for a large number of resource UEVs.

PMID:
22489863
DOI:
10.1021/es203440n
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center