Format

Send to

Choose Destination
Med Phys. 2012 Apr;39(4):1904-16. doi: 10.1118/1.3691902.

Frequency split metal artifact reduction (FSMAR) in computed tomography.

Author information

1
Institute of Medical Physics, University of Erlangen-N├╝rnberg, Erlangen, Germany.

Abstract

PURPOSE:

The problem of metal artifact reduction (MAR) is almost as old as the clinical use of computed tomography itself. When metal implants are present in the field of measurement, severe artifacts degrade the image quality and the diagnostic value of CT images. Up to now, no generally accepted solution to this issue has been found. In this work, a method based on a new MAR concept is presented: frequency split metal artifact reduction (FSMAR). It ensures efficient reduction of metal artifacts at high image quality with enhanced preservation of details close to metal implants.

METHODS:

FSMAR combines a raw data inpainting-based MAR method with an image-based frequency split approach. Many typical methods for metal artifact reduction are inpainting-based MAR methods and simply replace unreliable parts of the projection data, for example, by linear interpolation. Frequency split approaches were used in CT, for example, by combining two reconstruction methods in order to reduce cone-beam artifacts. FSMAR combines the high frequencies of an uncorrected image, where all available data were used for the reconstruction with the more reliable low frequencies of an image which was corrected with an inpainting-based MAR method. The algorithm is tested in combination with normalized metal artifact reduction (NMAR) and with a standard inpainting-based MAR approach. NMAR is a more sophisticated inpainting-based MAR method, which introduces less new artifacts which may result from interpolation errors. A quantitative evaluation was performed using the examples of a simulation of the XCAT phantom and a scan of a spine phantom. Further evaluation includes patients with different types of metal implants: hip prostheses, dental fillings, neurocoil, and spine fixation, which were scanned with a modern clinical dual source CT scanner.

RESULTS:

FSMAR ensures sharp edges and a preservation of anatomical details which is in many cases better than after applying an inpainting-based MAR method only. In contrast to other MAR methods, FSMAR yields images without the usual blurring close to implants.

CONCLUSIONS:

FSMAR should be used together with NMAR, a combination which ensures an accurate correction of both high and low frequencies. The algorithm is computationally inexpensive compared to iterative methods and methods with complex inpainting schemes. No parameters were chosen manually; it is ready for an application in clinical routine.

PMID:
22482612
DOI:
10.1118/1.3691902
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center