Format

Send to

Choose Destination
Mob Genet Elements. 2011 Sep;1(3):225-229. Epub 2011 Sep 1.

A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein.

Author information

1
Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT; Mikrobiologie/Biotechnologie; Eberhard Karls Universitaet Tuebingen; Tuebingen, Germany.

Abstract

Streptomycetes, Gram-positive soil bacteria well known for the production of antibiotics feature a unique conjugative DNA transfer system. In contrast to classical conjugation which is characterized by the secretion of a pilot protein covalently linked to a single-stranded DNA molecule, in Streptomyces a double-stranded DNA molecule is translocated during conjugative transfer. This transfer involves a single plasmid encoded protein, TraB. A detailed biochemical and biophysical characterization of TraB, revealed a close relationship to FtsK, mediating chromosome segregation during bacterial cell division. TraB translocates plasmid DNA by recognizing 8-bp direct repeats located in a specific plasmid region clt. Similar sequences accidentally also occur on chromosomes and have been shown to be bound by TraB. We suggest that TraB mobilizes chromosomal genes by the interaction with these chromosomal clt-like sequences not relying on the integration of the conjugative plasmid into the chromosome.

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center