Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2012 May 1;188(9):4558-67. doi: 10.4049/jimmunol.1102363. Epub 2012 Apr 2.

Pulmonary inflammation induced by subacute ozone is augmented in adiponectin-deficient mice: role of IL-17A.

Author information

  • 1Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.


Pulmonary responses to ozone, a common air pollutant, are augmented in obese individuals. Adiponectin, an adipose-derived hormone that declines in obesity, has regulatory effects on the immune system. To determine the role of adiponectin in the pulmonary inflammation induced by extended (48-72 h) low-dose (0.3 parts per million) exposure to ozone, adiponectin-deficient (Adipo(-/-)) and wild-type mice were exposed to ozone or to room air. In wild-type mice, ozone exposure increased total bronchoalveolar lavage (BAL) adiponectin. Ozone-induced lung inflammation, including increases in BAL neutrophils, protein (an index of lung injury), IL-6, keratinocyte-derived chemokine, LPS-induced CXC chemokine, and G-CSF were augmented in Adipo(-/-) versus wild-type mice. Ozone also increased IL-17A mRNA expression to a greater extent in Adipo(-/-) versus wild-type mice. Moreover, compared with control Ab, anti-IL-17A Ab attenuated ozone-induced increases in BAL neutrophils and G-CSF in Adipo(-/-) but not in wild-type mice, suggesting that IL-17A, by promoting G-CSF release, contributed to augmented neutrophilia in Adipo(-/-) mice. Flow cytometric analysis of lung cells revealed that the number of CD45(+)/F4/80(+)/IL-17A(+) macrophages and γδ T cells expressing IL-17A increased after ozone exposure in wild-type mice and further increased in Adipo(-/-) mice. The IL-17(+) macrophages were CD11c(-) (interstitial macrophages), whereas CD11c(+) macrophages (alveolar macrophages) did not express IL-17A. Taken together, the data are consistent with the hypothesis that adiponectin protects against neutrophil recruitment induced by extended low-dose ozone exposure by inhibiting the induction and/or recruitment of IL-17A in interstitial macrophages and/or γδ T cells.

[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center