Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res A. 2012 Jun;100(6):1628-36. doi: 10.1002/jbm.a.34111. Epub 2012 Mar 23.

Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet β-cell spheroids cocultured with mesenchymal stem cells.

Author information

  • 1Diabetes Research Group, King's College London School of Medicine, Guy's Hospital, London SE1 1UL, United Kingdom.

Abstract

Islet transplantation as a therapy for type 1 diabetes is currently limited by lack of primary transplant material from human donors and post-transplantation loss of islets caused by adverse immune and nonimmune reactions. This study aimed to develop a novel strategy to create microenvironment for islets via integration of nanoencapsulation with cell cocultures, thereby enhancing their survival and function. The nanoencapsulation was achieved via layer-by-layer deposition of phosphorycholine-modified poly-L-lysine/heparin leading to the formation of nanometer-thick multilayer coating on islets. Spheroids formed by coculturing MIN6 β-cells with mesenchymal stem cells in suspension were used as the tool for testing encapsulation. Coculturing MSCs with MIN6 cells allowed the cell constructs to enhance structural and morphologic stability with improved insulin secretory function and render them less susceptible to inflammatory cytokine-induced apoptosis. Combining nanoencapsulation with coculture of MSCs/MIN6 resulted in higher glucose responsiveness, and lower antibody binding and apoptosis-inducing effects of cytokines. This strategy of nanoencapsulating islet cocultures appears promising to improve cellular delivery of insulin for treating type 1 diabetes.

PMID:
22447690
DOI:
10.1002/jbm.a.34111
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center