Format

Send to

Choose Destination
J Strength Cond Res. 2012 Apr;26(4):906-13. doi: 10.1519/JSC.0b013e31822e589e.

Effect of load positioning on the kinematics and kinetics of weighted vertical jumps.

Author information

1
School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom. p.swinton@rgu.ac.uk

Abstract

One of the most popular exercises for developing lower-body muscular power is the weighted vertical jump. The present study sought to examine the effect of altering the position of the external load on the kinematics and kinetics of the movement. Twenty-nine resistance-trained rugby union athletes performed maximal effort jumps with 0, 20, 40, and 60% of their squat 1 repetition maximum (1RM) with the load positioned (a) on the posterior aspect of the shoulder using a straight barbell and (b) at arms' length using a hexagonal barbell. Kinematic and kinetic variables were calculated through integration of the vertical ground reaction force data using a forward dynamics approach. Performance of the hexagonal barbell jump resulted in significantly (p < 0.05) greater values for jump height, peak force, peak power, and peak rate of force development compared with the straight barbell jump. Significantly (p < 0.05) greater peak power was produced during the unloaded jump compared with all trials where the external load was positioned on the shoulder. In contrast, significantly (p < 0.05) greater peak power was produced when using the hexagonal barbell combined with a load of 20% 1RM compared with all other conditions investigated. The results suggest that weighted vertical jumps should be performed with the external load positioned at arms' length rather than on the shoulder when attempting to improve lower-body muscular performance.

PMID:
22446664
DOI:
10.1519/JSC.0b013e31822e589e
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center