Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2012 Apr 17;22(4):721-35. doi: 10.1016/j.devcel.2012.01.015. Epub 2012 Mar 22.

Genetic and epigenetic determinants of neurogenesis and myogenesis.

Author information

1
Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

Abstract

The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We demonstrate that NEUROD2 and MYOD bind a shared CAGCTG E box motif and E box motifs specific for each factor: CAGGTG for MYOD and CAGATG for NEUROD2. Binding at factor-specific motifs is associated with gene transcription, whereas binding at shared sites is associated with regional epigenetic modifications but is not as strongly associated with gene transcription. Binding is largely constrained to E boxes preset in an accessible chromatin context that determines the set of target genes activated in each cell type. These findings demonstrate that the differentiation program is genetically determined by E box sequence, whereas cell lineage epigenetically determines the availability of E boxes for each differentiation program.

PMID:
22445365
PMCID:
PMC3331915
DOI:
10.1016/j.devcel.2012.01.015
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Secondary source ID, Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center