Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Tissue Res. 2012 Apr;348(1):1-27. doi: 10.1007/s00441-012-1367-y. Epub 2012 Mar 23.

Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes.

Author information

1
Max Planck Institute for Brain Research, Frankfurt, Germany. uwe.ernsberger@brain.mpg.de

Abstract

Analysis of transcription factor function during neurogenesis has provided a huge amount of data on the generation and specification of diverse neuron populations in the central and peripheral nervous systems of vertebrates. However, an understanding of the induction of key neuron functions including electrical information processing and synaptic transmission lags seriously behind. Whereas pan-neuronal markers such as neurofilaments, neuron-specific tubulin and RNA-binding proteins have often been included in developmental analysis, the molecular players underlying electrical activity and transmitter release have been neglected in studies addressing gene expression during neuronal induction. Here, I summarize the evidence for a distinct accumulation pattern of mRNAs for synaptic proteins, a pattern that is delayed compared with pan-neuronal gene expression during neurogenesis. The conservation of this pattern across diverse avian and mammalian neuron populations suggests a common mechanism for the regulation of various sets of neuronal genes during initial neuronal differentiation. The co-regulation of genes coding for synaptic proteins from embryonic to postnatal development indicates that the expression of the players required for synaptic transmission shares common regulatory features. For the ion channels involved in neuronal electrical activity, such as voltage-gated sodium channels, the situation is less clear because of the lack of comparative studies early during neurogenesis. Transcription factors have been characterized that regulate the expression of synaptic proteins in vitro and in vivo. They currently do not explain the co-regulation of these genes across different neuron populations. The neuron-restrictive silencing factor NRSF/REST targets a large gene set, but not all of the genes coding for pan-neuronal, synaptic and ion channel proteins. The discrepancy between NRSF/REST loss-of-function and silencer-to-activator-switch studies leaves the full functional implications of this factor open. Together with microRNAs, splicing regulators, chromatin remodellers and an increasing list of transcriptional regulators, the factor is embedded in feedback circuits with the potential to orchestrate neuronal differentiation. The precise regulation of the coordinated expression of proteins underlying key neuronal functions by these circuits during neuronal induction is a major emerging topic.

PMID:
22437873
DOI:
10.1007/s00441-012-1367-y
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center