Send to

Choose Destination
See comment in PubMed Commons below
Biomed Opt Express. 2012 Mar 1;3(3):418-34. doi: 10.1364/BOE.3.000418. Epub 2012 Feb 7.

Determining the optical properties of a gelatin‑TiO(2) phantom at 780 nm.

Author information

Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.


Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μ(a), transport mean free path [Formula: see text], and scattering coefficient μ(s) of a TiO(2) in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μ(a) and [Formula: see text], we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]The asymmetry parameter g obtained from the parameters [Formula: see text] and [Formula: see text] is 0.93, which indicates that the scattering entities are not bare TiO(2) particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms.


(170.3660) Light propagation in tissues; (170.6935) Tissue characterization; (290.1990) Diffusion; (290.4210) Multiple scattering

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center