Format

Send to

Choose Destination
Brain Connect. 2011;1(5):367-75. doi: 10.1089/brain.2011.0038. Epub 2011 Nov 14.

The ubiquity of small-world networks.

Author information

1
School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Winston-Salem, North Carolina 27157, USA. qtelesfo@wfubmc.edu

Abstract

Small-world networks, according to Watts and Strogatz, are a class of networks that are "highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs." These characteristics result in networks with unique properties of regional specialization with efficient information transfer. Social networks are intuitive examples of this organization, in which cliques or clusters of friends being interconnected but each person is really only five or six people away from anyone else. Although this qualitative definition has prevailed in network science theory, in application, the standard quantitative application is to compare path length (a surrogate measure of distributed processing) and clustering (a surrogate measure of regional specialization) to an equivalent random network. It is demonstrated here that comparing network clustering to that of a random network can result in aberrant findings and that networks once thought to exhibit small-world properties may not. We propose a new small-world metric, ω (omega), which compares network clustering to an equivalent lattice network and path length to a random network, as Watts and Strogatz originally described. Example networks are presented that would be interpreted as small-world when clustering is compared to a random network but are not small-world according to ω. These findings have important implications in network science because small-world networks have unique topological properties, and it is critical to accurately distinguish them from networks without simultaneous high clustering and short path length.

PMID:
22432451
PMCID:
PMC3604768
DOI:
10.1089/brain.2011.0038
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center