Send to

Choose Destination
J Biol Chem. 2012 May 4;287(19):15466-78. doi: 10.1074/jbc.M111.314880. Epub 2012 Mar 19.

Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor.

Author information

Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy.


We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB(1), CB(2), and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μM) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB(1)-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μM). This CB(1)-dependent activity was fully abolished by the selective CB(1) antagonist SR141716 or by RNA interference of the receptor. CB(1) signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB(1) activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center