Send to

Choose Destination
J Food Sci. 2011 Aug;76(6):E414-21. doi: 10.1111/j.1750-3841.2011.02249.x. Epub 2011 Jul 5.

Stability of anthocyanins in frozen and freeze-dried raspberries during long-term storage: in relation to glass transition.

Author information

Biological Systems Engineering Dept., Washington State Univ., P.O Box 646120, Pullman, WA 99164-6120, USA.


Anthocyanins, natural plant pigments in the flavonoid group, are responsible for the red color and some of the nutraceutical benefits of raspberries. This study explores anthocyanin degradation in frozen and freeze-dried raspberries during storage in relation to glass transition temperatures. Frozen raspberries were stored at -80, -35, and -20 °C, while freeze-dried raspberries were stored at selected water activity (a(w)) values ranging from 0.05 to 0.75 at room temperature (23 °C) for more than a year. The characteristic glass transition temperatures (T'(g)) of raspberries with high water content and glass transition temperature (T(g)) of raspberries with small water content were determined using a differential scanning calorimeter. The pH differential method was used to determine the quantity of anthocyanins in frozen and freeze-dried raspberries at selected time intervals. The total anthocyanins in raspberries fluctuated during 378 d of storage at -20 and -35, and -80 °C. Anthocyanin degradation in freeze-dried raspberries ranged from 27% to 32% and 78% to 89% at a(w) values of 0.05 to 0.07 and 0.11 to 0.43, respectively, after 1 y. Anthocyanins were not detectable in freeze-dried raspberries stored at a(w) values of 0.53 to 0.75 after 270 d. First order and Weibull equations were used to fit the anthocyanin degradation in freeze-dried raspberries. The 1(st)-order rate constant (k) of anthocyanin degradation ranged from 0.003 to 0.023 days⁻¹ at the selected water activities. Significant anthocyanin degradation occurred in both the glassy and rubbery states of freeze-dried raspberries during long-term storage. However, the rate of anthocyanin degradation in freeze-dried raspberries stored in the glassy state was significantly smaller than the rate of anthocyanin degradation in the rubbery state.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center