Format

Send to

Choose Destination
J Vis Exp. 2012 Mar 1;(61):e3758. doi: 10.3791/3758.

Colonization of Euprymna scolopes squid by Vibrio fischeri.

Author information

1
Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University.

Abstract

Specific bacteria are found in association with animal tissue. Such host-bacterial associations (symbioses) can be detrimental (pathogenic), have no fitness consequence (commensal), or be beneficial (mutualistic). While much attention has been given to pathogenic interactions, little is known about the processes that dictate the reproducible acquisition of beneficial/commensal bacteria from the environment. The light-organ mutualism between the marine Gram-negative bacterium V. fischeri and the Hawaiian bobtail squid, E. scolopes, represents a highly specific interaction in which one host (E. scolopes) establishes a symbiotic relationship with only one bacterial species (V. fischeri) throughout the course of its lifetime. Bioluminescence produced by V. fischeri during this interaction provides an anti-predatory benefit to E. scolopes during nocturnal activities, while the nutrient-rich host tissue provides V. fischeri with a protected niche. During each host generation, this relationship is recapitulated, thus representing a predictable process that can be assessed in detail at various stages of symbiotic development. In the laboratory, the juvenile squid hatch aposymbiotically (uncolonized), and, if collected within the first 30-60 minutes and transferred to symbiont-free water, cannot be colonized except by the experimental inoculum. This interaction thus provides a useful model system in which to assess the individual steps that lead to specific acquisition of a symbiotic microbe from the environment. Here we describe a method to assess the degree of colonization that occurs when newly hatched aposymbiotic E. scolopes are exposed to (artificial) seawater containing V. fischeri. This simple assay describes inoculation, natural infection, and recovery of the bacterial symbiont from the nascent light organ of E. scolopes. Care is taken to provide a consistent environment for the animals during symbiotic development, especially with regard to water quality and light cues. Methods to characterize the symbiotic population described include (1) measurement of bacterially-derived bioluminescence, and (2) direct colony counting of recovered symbionts.

PMID:
22414870
PMCID:
PMC3399469
DOI:
10.3791/3758
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for MyJove Corporation Icon for PubMed Central
Loading ...
Support Center