Format

Send to

Choose Destination
Reprod Biomed Online. 2012 May;24(5):558-66. doi: 10.1016/j.rbmo.2012.01.016. Epub 2012 Jan 28.

Taurine attenuates maternal and embryonic oxidative stress in a streptozotocin-diabetic rat model.

Author information

1
Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570 020, India. shivanm@ccf.org

Abstract

Oxidative stress mechanisms have been implicated in congenital anomalies and morbidity/mortality of fetus/newborn in diabetic pregnancy. Numerous antioxidant treatments have shown varied beneficial effects in improving both maternal and fetal outcomes. The present study examined the propensity of taurine to attenuate the degree of embryopathy and oxidative stress among pregnant diabetic rats. Adult rats (CFT-Wistar) were rendered diabetic with an acute dose of streptozotocin (STZ; 45 mg/kg bodyweight) on gestation day (GD) 4. Both Diabetic and non-diabetic dams were given oral supplements of taurine (0.5 and 1g/kg bodyweight/day) from GD 5 to GD 12. Maternal diet intake, bodyweight gain and urine output were monitored and dams were killed on GD 13. Markers of oxidative stress were determined in embryos and maternal livers. STZ treatment induced marked embryopathy (32%) and taurine supplements markedly reduced the degree of embryopathy (54% protection). The STZ-induced higher oxidative stress was significantly attenuated in rats given taurine supplements (P<0.05) and a similar effect was seen in embryos (P<0.05). These data suggest that dietary taurine during pregnancy provides significant protection against diabetes-induced oxidative stress in both the mother and the embryos and thus may serve as a therapeutic supplement during diabetic pregnancy. Diabetes during pregnancy affects >5% of all pregnancies, causing reproductive abnormalities that enhance spontaneous abortion - congenital anomalies, morbidity and mortality of both mother and fetus/newborn. One of the major mechanisms is increased oxidative stress caused by hyperglycaemia and the most prominent anti-teratogenic effect was achieved using antioxidative agents. Management of oxidative stress is considered, along with tight glycaemic control, to be beneficial both before conception and during pregnancy. Taurine, a ubiquitous amino acid found in almost all mammalian tissues, constitutes more than 50% of free amino acids. The aim of the study was to determine whether oral taurine supplementation given to pregnant diabetic rats during the post-implantation period could reduce embryo lethality and protect the developing embryos against maternal hyperglycaemia-induced oxidative stress. Adult rats were rendered diabetic with an acute dose of streptozotocin on gestation day (GD) 4. Both diabetic and non-diabetic dams were administered oral taurine for a period of 8 days (GD 5-13). Maternal diet intake, bodyweight gain and urine output were monitored and dams were killed on GD 13. Markers of oxidative stress and antioxidant defences were studied in embryos and maternal livers. STZ induced marked embryopathy (32%) and taurine supplementation offered significant protection (54%). Taurine significantly offset diabetes-associated oxidative stress in the embryos of diabetic rats. These data suggest that dietary taurine supplementation during pregnancy provides significant protection against diabetes-induced oxidative stress both in mother and embryos and thus may serve as a therapeutic supplement under diabetic pregnancy.

PMID:
22414371
DOI:
10.1016/j.rbmo.2012.01.016
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center