Format

Send to

Choose Destination
J Bone Miner Res. 2012 Jun;27(6):1252-62. doi: 10.1002/jbmr.1594.

Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation.

Author information

1
Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland.

Abstract

As they age, mice deficient for the β2-adrenergic receptor (Adrb2(-/-) ) maintain greater trabecular bone microarchitecture, as a result of lower bone resorption and increased bone formation. The role of β1-adrenergic receptor signaling and its interaction with β2-adrenergic receptor on bone mass regulation, however, remains poorly understood. We first investigated the skeletal response to mechanical stimulation in mice deficient for β1-adrenergic receptors and/or β2-adrenergic receptors. Upon axial compression loading of the tibia, bone density, cancellous and cortical microarchitecture, as well as histomorphometric bone forming indices, were increased in both Adrb2(-/-) and wild-type (WT) mice, but not in Adrb1(-/-) nor in Adrb1b2(-/-) mice. Moreover, in the unstimulated femur and vertebra, bone mass and microarchitecture were increased in Adrb2(-/-) mice, whereas in Adrb1(-/-) and Adrb1b2(-/-) double knockout mice, femur bone mineral density (BMD), cancellous bone volume/total volume (BV/TV), cortical size, and cortical thickness were lower compared to WT. Bone histomorphometry and biochemical markers showed markedly decreased bone formation in Adrb1b2(-/-) mice during growth, which paralleled a significant decline in circulating insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGF-BP3). Finally, administration of the β-adrenergic agonist isoproterenol increased bone resorption and receptor activator of NF-κB ligand (RANKL) and decreased bone mass and microarchitecture in WT but not in Adrb1b2(-/-) mice. Altogether, these results demonstrate that β1- and β2-adrenergic signaling exert opposite effects on bone, with β1 exerting a predominant anabolic stimulus in response to mechanical stimulation and during growth, whereas β2-adrenergic receptor signaling mainly regulates bone resorption during aging.

PMID:
22407956
DOI:
10.1002/jbmr.1594
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center