Format

Send to

Choose Destination
See comment in PubMed Commons below
Cereb Cortex. 2013 Mar;23(3):638-46. doi: 10.1093/cercor/bhs047. Epub 2012 Mar 7.

Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.

Author information

1
Department of Clinical Neuroscience, Karolinska Institute, SE-171 76 Stockholm, Sweden.

Abstract

Recent studies have revealed spatial and functional relations in the temporal dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) or electroencephalography (EEG) signals recorded in the adult brain. By modeling the frequency power spectrum of resting-state brain signals with a power-law function 0(f)α1/fα, the power-law exponent α has been shown to relate to the connectivity patterns of spontaneous brain activity that forms so-called rs-fMRI networks in the human adult brain. Here, we present an analysis of the dynamic properties of rs-fMRI and EEG signals acquired both in the newborn and adult brain, and we demonstrate frequency scaling of a power-law kind for orders of magnitude in the hemodynamic (0.01-0.15 Hz) and the electrical (0.2-30 Hz) domain. We show that the spatial segregation of resting-state dynamics of intrinsic fMRI signals in terms of the power-law exponent α is closely related to previously delineated resting-state neuronal architecture that encompasses primary sensory cortices and associate cortex in newborns. Moreover, the spatial profiles of differences in temporal dynamics for rs-fMRI signals could also be observed in EEG measurements in the newborn brain, albeit at a coarser spatial scale, with larger power-law exponents in occipital and parietal cortices compared with signals from the frontal brain.

PMID:
22402348
DOI:
10.1093/cercor/bhs047
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center