Format

Send to

Choose Destination
See comment in PubMed Commons below
J Thorac Cardiovasc Surg. 2012 Jun;143(6):1443-9. doi: 10.1016/j.jtcvs.2012.02.008. Epub 2012 Mar 7.

Catalytic peroxynitrite decomposition improves reperfusion injury after heart transplantation.

Author information

1
Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany. gabor.szabo@urz.uni-heidelberg.de

Abstract

OBJECTIVE:

Peroxynitrite, a reactive nitrogen species, has been implicated in the development of ischemia-reperfusion injury. The present study investigated the effects of the potent peroxynitrite decomposition catalyst FP15 on myocardial and endothelial function after hypothermic ischemia-reperfusion in a heterotopic rat heart transplantation model.

METHODS:

After a 1-hour ischemic preservation and implantation of donor hearts, reperfusion was started after application of vehicle (5% glucose solution) or FP15 (0.3 mg/kg). The assessment of left ventricular pressure-volume relations, total coronary blood flow, endothelial function, immunohistochemical markers of nitro-oxidative stress, and myocardial high-energy phosphates was performed at 1 and 24 hours of reperfusion.

RESULTS:

After 1 hour of reperfusion, myocardial contractility (maximal slope of systolic pressure increment at 140 μL left ventricular volume: 5435 ± 508 mm Hg/s vs 2346 ± 263 mm Hg/s), coronary blood flow (3.98 ± 0.33 mL/min/g vs 2.74 ± 0.29 mL/min/g), and endothelial function were significantly improved, nitro-oxidative stress was reduced, and myocardial high-energy phosphate content was preserved in the FP15-treated animals compared with controls.

CONCLUSIONS:

Pharmacologic peroxynitrite decomposition reduces reperfusion injury after heart transplantation as the result of reduction of nitro-oxidative stress and prevention of energy depletion and exerts a beneficial effect against reperfusion-induced graft cardiac and coronary endothelial dysfunction.

PMID:
22401641
PMCID:
PMC3586276
DOI:
10.1016/j.jtcvs.2012.02.008
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center