Send to

Choose Destination
Metabolism. 2012 Aug;61(8):1142-51. doi: 10.1016/j.metabol.2012.01.012. Epub 2012 Mar 6.

Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB.

Author information

Department of Endocrinology and Metabolism, Ajou University, School of Medicine, Suwon, Republic of Korea.


We investigated the effects of fibroblast growth factor-21 (FGF-21) on palmitate-induced insulin resistance in skeletal muscle myotubes. First, to determine the effect of FGF-21 on palmitate-induced insulin resistance, we measured 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake and levels of proteins involved in insulin signaling pathways (IRS-1 and Akt) in human skeletal muscle myotubes (HSMMs) exposed to palmitate for 24h, and compared HSMMs exposed to palmitate and different doses of recombinant FGF-21. Second, to determine the mechanisms underlying the contribution of FGF-21 to palmitate-induced insulin resistance, we compared levels of proteins linked to palmitate-induced insulin resistance (PKC-θ, IKKα/β, JNK, p38, IκBα, and NF-κB) in HSMMs exposed to palmitate and different doses of recombinant FGF-21 for 24h. Palmitate-reduced glucose uptake was restored by FGF-21. Palmitate inhibited phosphorylation of Akt and thereby impaired insulin signaling in HSMMs. FGF-21 prevented palmitate from inhibiting the phosphorylation of Akt. These results indicate that FGF-21 prevented palmitate-induced insulin resistance in HSMMs. Palmitate activated NF-κB in HSMMs, thereby impairing the action of insulin and initiating chronic inflammation. FGF-21 inhibited palmitate-induced NF-κB activation in HSMMs. The results of the present study suggest that FGF-21 prevents palmitate-induced insulin resistance in HSMMs by inhibiting the activation of stress kinase and NF-κB.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center