Send to

Choose Destination
J Biol Chem. 2012 Apr 20;287(17):13705-12. doi: 10.1074/jbc.M112.346221. Epub 2012 Mar 5.

p21-Activated kinase 2 (PAK2) inhibits TGF-β signaling in Madin-Darby canine kidney (MDCK) epithelial cells by interfering with the receptor-Smad interaction.

Author information

State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.


TGF-β (transforming growth factor β) plays a variety of cellular functions mainly through the Smad pathway. Phosphorylation of the carboxyl SXS motif in R-Smads (Smad2 and Smad3) by the type I receptor TβRI is a key step for their activation. It has been reported that the serine/threonine kinase PAK2 (p21-activated kinase 2) can mediate TGF-β signaling in mesenchymal cells. Here, we report that PAK2 restricts TGF-β-induced Smad2/3 activation and transcriptional responsiveness in MDCK epithelial cells. Mechanistically, PAK2 associates with Smad2 and Smad3 in a kinase activity-dependent manner and blocks their activation. PAK2 phosphorylates Smad2 at Ser-417, which is adjacent to the L3 loop that contributes to the TβRI-R-Smad association. Consistently, substitution of Ser-417 with glutamic acid attenuates the interaction of Smad2 with TβRI. Together, our results indicate that PAK2 negatively modulate TGF-β signaling by attenuating the receptor-Smad interaction and thus Smad activation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center