Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2012;7(2):e32443. doi: 10.1371/journal.pone.0032443. Epub 2012 Feb 27.

[11C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels.

Author information

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.


Evidence indicates that synchronization of cortical activity at gamma-band frequencies, mediated through GABA-A receptors, is important for perceptual/cognitive processes. To study GABA signaling in vivo, we recently used a novel positron emission tomography (PET) paradigm measuring the change in binding of the benzodiazepine (BDZ) site radiotracer [(11)C]flumazenil associated with increases in extracellular GABA induced via GABA membrane transporter (GAT1) blockade with tiagabine. GAT1 blockade resulted in significant increases in [(11)C]flumazenil binding potential (BPND) over baseline in the major functional domains of the cortex, consistent with preclinical studies showing that increased GABA levels enhance the affinity of GABA-A receptors for BDZ ligands. In the current study we sought to replicate our previous results and to further validate this approach by demonstrating that the magnitude of increase in [(11)C]flumazenil binding observed with PET is directly correlated with tiagabine dose. [(11)C]flumazenil distribution volume (VT) was measured in 18 healthy volunteers before and after GAT1 blockade with tiagabine. Two dose groups were studied (n = 9 per group; Group I: tiagabine 0.15 mg/kg; Group II: tiagabine 0.25 mg/kg). GAT1 blockade resulted in increases in mean (± SD) [(11)C]flumazenil VT in Group II in association cortices (6.8 ± 0.8 mL g-1 vs. 7.3 ± 0.4 mL g-1;p = 0.03), sensory cortices (6.7 ± 0.8 mL g-1 vs. 7.3 ± 0.5 mL g-1;p = 0.02) and limbic regions (5.2 ± 0.6 mL g-1 vs. 5.7 ± 0.3 mL g-1;p = 0.03). No change was observed at the low dose (Group I). Increased orbital frontal cortex binding of [(11)C]flumazenil in Group II correlated with the ability to entrain cortical networks (r = 0.67, p = 0.05) measured via EEG during a cognitive control task. These data provide a replication of our previous study demonstrating the ability to measure in vivo, with PET, acute shifts in extracellular GABA.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center