Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cancer Ther. 2012 Apr;11(4):888-97. doi: 10.1158/1535-7163.MCT-11-0676. Epub 2012 Mar 1.

A high-throughput panel for identifying clinically relevant mutation profiles in melanoma.

Author information

1
Queensland Institute of Medical Research, Oncogenomics Laboratory, Queensland University of Technology, Brisbane, Queensland. ken.dutton-regester@qimr.edu.au

Abstract

Success with molecular-based targeted drugs in the treatment of cancer has ignited extensive research efforts within the field of personalized therapeutics. However, successful application of such therapies is dependent on the presence or absence of mutations within the patient's tumor that can confer clinical efficacy or drug resistance. Building on these findings, we developed a high-throughput mutation panel for the identification of frequently occurring and clinically relevant mutations in melanoma. An extensive literature search and interrogation of the Catalogue of Somatic Mutations in Cancer database identified more than 1,000 melanoma mutations. Applying a filtering strategy to focus on mutations amenable to the development of targeted drugs, we initially screened 120 known mutations in 271 samples using the Sequenom MassARRAY system. A total of 252 mutations were detected in 17 genes, the highest frequency occurred in BRAF (n = 154, 57%), NRAS (n = 55, 20%), CDK4 (n = 8, 3%), PTK2B (n = 7, 2.5%), and ERBB4 (n = 5, 2%). Based on this initial discovery screen, a total of 46 assays interrogating 39 mutations in 20 genes were designed to develop a melanoma-specific panel. These assays were distributed in multiplexes over 8 wells using strict assay design parameters optimized for sensitive mutation detection. The final melanoma-specific mutation panel is a cost effective, sensitive, high-throughput approach for identifying mutations of clinical relevance to molecular-based therapeutics for the treatment of melanoma. When used in a clinical research setting, the panel may rapidly and accurately identify potentially effective treatment strategies using novel or existing molecularly targeted drugs.

PMID:
22383533
DOI:
10.1158/1535-7163.MCT-11-0676
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center