Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosurg Pediatr. 2012 Mar;9(3):259-64. doi: 10.3171/2011.12.PEDS11227.

Intraoperative magnetic resonance imaging to reduce the rate of early reoperation for lesion resection in pediatric neurosurgery.

Author information

1
Department of Neurological Surgery, Washington University School ofMedicine, St. Louis, MO 63110, USA. shahma@wudosis.wustl.edu

Abstract

OBJECT:

This study describes the pediatric experience with a dual-multifunction-room IMRIS 1.5-T intraoperative magnetic resonance imaging (iMRI) suite and analyzes its impact on clinical variables associated with neurosurgical resection of intracranial lesions, including safety and efficacy.

METHODS:

Since the inception of the iMRI-guided resection program in April 2008 at both Barnes-Jewish and St. Louis Children's Hospital, a prospective database recorded the clinical variables associated with demographics and outcome with institutional review board approval. A similarly approved retrospective database was constructed from February 2006 to March 2010 for non-iMRI resections. These databases were retrospectively reviewed for clinical variables associated with resection of pediatric (age 20 months-21 years) intracranial lesions including brain tumors and focal cortical dysplasia. Patient demographics, operative time, estimated blood loss, additional resection, length of stay, pathology, and complications were analyzed.

RESULTS:

The authors found that 42 iMRI-guided resections were performed, whereas 103 conventional resections had been performed without the iMRI. The mean patient age was 10.5 years (range 20 months-20 years) in the iMRI group and 9.8 years (range 2-21 years) in the conventional group (p = 0.41). The mean duration of surgery was 350 minutes in the iMRI group and 243 minutes in the conventional group (p < 0.0001). The mean hospital stay was 8.2 days in the iMRI group, and 6.6 days in the conventional group, and this trended toward significance (p = 0.05). In the first 2 weeks postoperatively, there were 8 reoperations (7.77%) in the conventional group compared with none in the iMRI group, which was not significant in a 2-tailed test (p = 0.11) but trended toward significance in a 1-tailed test (p = 0.06). The significant complications included reoperation for hydrocephalus or infection: 6.8% (conventional) versus 4.8% (iMRI).

CONCLUSIONS:

Intraoperative MR imaging-guided resections resulted in a trend toward reduction in the need for repeat surgery in the immediate 2-week postoperative period compared with conventional pediatric neurosurgical resections for tumor or focal cortical dysplasia. Although there is an increased operative time, the iMRI suite offers a comparable safety and efficacy profile while potentially reducing the per-case cost by diminishing the need for early reoperation.

PMID:
22380953
DOI:
10.3171/2011.12.PEDS11227
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center