Format

Send to

Choose Destination
Food Funct. 2012 May;3(5):462-76. doi: 10.1039/c2fo10274a. Epub 2012 Feb 29.

Target molecules of food phytochemicals: food science bound for the next dimension.

Author information

1
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan. cancer@kais.kyoto-u.ac.jp

Abstract

Phytochemicals are generally defined as secondary metabolites in plants that play crucial roles in their adaptation to a variety of environmental stressors. There is a great body of compelling evidence showing that these metabolites have pronounced potentials for regulating and modulating human health and disease onset, as shown by both experimental and epidemiological approaches. Concurrently, enormous efforts have been made to elucidate the mechanism of actions underlying their biological and physiological functions. For example, the pioneering work of Tachibana et al. uncovered the receptor for (-)-epigallocatechin-3-gallate (EGCg) as the 67 kDa laminin receptor, which was shown to partially mediate the functions of EGCg, such as anti-inflammatory, anti-allergic, and anti-proliferative activities. Thereafter, several protein kinases were identified as binding proteins of flavonoids, including myricetin, quercetin, and kaempferol. Isothiocyanates, sulfur-containing phytochemicals present in cruciferous plants, are well known to target Keap1 for activating the transcription factor Nrf2 for inducing self-defensive and anti-oxidative gene expression. In addition, we recently identified CD36 as a cell surface receptor for ursolic acid, a triterpenoid ubiquitously occurring in plants. Importantly, the above mentioned target proteins are indispensable for phytochemicals to exhibit, at least in part, their bioactivities. Nevertheless, it is reasonable to assume that some of the activities and potential toxicities of metabolites are exerted via their interactions with unidentified, off-target proteins. This notion may be supported by the fact that even rationally designed drugs occasionally display off-target effects and induce unexpected outcomes, including toxicity. Here we update the current status and future directions of research related to target molecules of food phytochemicals.

PMID:
22377900
DOI:
10.1039/c2fo10274a
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center