Format

Send to

Choose Destination
J Biomed Mater Res A. 2012 May;100(5):1324-34. doi: 10.1002/jbm.a.34072. Epub 2012 Feb 28.

Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.

Author information

1
Department of Functional Polymer Science, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan. s09t155@shinshu-u.ac.jp

Abstract

An important objective in bone tissue engineering is to fabricate biomimetic three-dimensional scaffolds that stimulate mineralization for rapid regeneration of bone. In this work, scaffolds of electrospun poly(vinyl alcohol) (PVA) fibers (diameter = 286 ± 14 nm) were coated with a sol-gel derived bioactive glass (BG) and evaluated in vitro for potential applications in bone repair. Structural and chemical analyses showed that the BG coating was homogeneously deposited on the PVA fibers. In vitro cell culture studies showed that the BG-coated PVA scaffold had a greater capacity to support proliferation of osteogenic MC3T3-E1 cells, alkaline phosphatase activity, and mineralization than the uncoated PVA scaffold. The BG coating improved the tensile strength of the PVA scaffold from 18 ± 2 MPa to 21 ± 2 MPa, but reduced the elongation to failure from 94 ± 4% to 64 ± 5%. However, immersion of the BG-coated PVA scaffolds in a simulated body fluid for 5 days resulted in an increase in the tensile strength (24 ± 2 MPa) and elongation to failure (159 ± 4%). Together, the results show that these BG-coated PVA scaffolds could be considered as candidate materials for bone tissue engineering applications.

PMID:
22374712
DOI:
10.1002/jbm.a.34072
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center