Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem B. 2012 Mar 8;116(9):2801-13. doi: 10.1021/jp209561t. Epub 2012 Feb 29.

Structural heterogeneity and unique distorted hydrogen bonding in primary ammonium nitrate ionic liquids studied by high-energy X-ray diffraction experiments and MD simulations.

Author information

1
Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

Abstract

Liquid structure and the closest ion-ion interactions in a series of primary alkylammonium nitrate ionic liquids [C(n)Am(+)][NO(3)(-)] (n = 2, 3, and 4) were studied by means of high-energy X-ray diffraction (HEXRD) experiments with the aid of molecular dynamics (MD) simulations. Experimental density and X-ray structure factors are in good accordance with those evaluated with MD simulations. With regard to liquid structure, characteristic peaks appeared in the low Q (Q: a scattering vector) region of X-ray structure factors S(Q)'s for all ionic liquids studied here, and they increased in intensity with a peak position shift toward the lower Q side by increasing the alkyl chain length. Experimentally evaluated S(Q(peak))(r(max)) functions, which represent the S(Q) intensity at a peak position of maximum intensity Q(peak) as a function of distance (actually a integration range r(max)), revealed that characteristic peaks in the low Q region are related to the intermolecular anion-anion correlation decrease in the r range of 10-12 Å. Appearance of the peak in the low Q region is probably related to the exclusion of the correlations among ions of the same sign in this r range by the alkyl chain aggregation. From MD simulations, we found unique and rather distorted NH···O hydrogen bonding between C(n)Am(+) (n = 2, 3, and 4) and NO(3)(-) in these ionic liquids regardless of the alkyl chain length. Subsequent ab initio calculations for both a molecular complex C(2)H(5)NH(2)···HONO(2) and an ion pair C(2)H(5)NH(3)(+)···ONO(2)(-) revealed that such distorted hydrogen bonding is specific in a liquid state of this family of ionic liquids, though the linear orientation is preferred for both the N···HO hydrogen bonding in a molecular complex and the NH···O one in an ion pair. Finally, we propose our interpretation of structural heterogeneity in PILs and also in APILs.

PMID:
22372592
DOI:
10.1021/jp209561t
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center