Send to

Choose Destination
See comment in PubMed Commons below
Hypertension. 2012 Apr;59(4):869-76. doi: 10.1161/HYPERTENSIONAHA.111.182071. Epub 2012 Feb 27.

Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain.

Author information

Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.


Cyclooxygenase (COX)-derived prostanoids have long been implicated in blood pressure (BP) regulation. Recently prostaglandin E(2) (PGE(2)) and its receptor EP(1) (EP(1)R) have emerged as key players in angiotensin II (Ang II)-dependent hypertension (HTN) and related end-organ damage. However, the enzymatic source of PGE(2,) that is, COX-1 or COX-2, and its site(s) of action are not known. The subfornical organ (SFO) is a key forebrain region that mediates systemic Ang II-dependent HTN via reactive oxygen species (ROS). We tested the hypothesis that cross-talk between PGE(2)/EP(1)R and ROS signaling in the SFO is required for Ang II HTN. Radiotelemetric assessment of blood pressure revealed that HTN induced by infusion of systemic "slow-pressor" doses of Ang II was abolished in mice with null mutations in EP(1)R or COX-1 but not COX-2. Slow-pressor Ang II-evoked HTN and ROS formation in the SFO were prevented when the EP(1)R antagonist SC-51089 was infused directly into brains of wild-type mice, and Ang-II-induced ROS production was blunted in cells dissociated from SFO of EP(1)R(-/-) and COX-1(-/-) but not COX-2(-/-) mice. In addition, slow-pressor Ang II infusion caused a ≈3-fold increase in PGE(2) levels in the SFO but not in other brain regions. Finally, genetic reconstitution of EP(1)R selectively in the SFO of EP(1)R-null mice was sufficient to rescue slow-pressor Ang II-elicited HTN and ROS formation in the SFO of this model. Thus, COX 1-derived PGE(2) signaling through EP(1)R in the SFO is required for the ROS-mediated HTN induced by systemic infusion of Ang II and suggests that EP(1)R in the SFO may provide a novel target for antihypertensive therapy.

[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center