Format

Send to

Choose Destination
Biochim Biophys Acta. 2012 Sep;1823(9):1568-79. doi: 10.1016/j.bbamcr.2012.02.007. Epub 2012 Feb 17.

Cell biology of molybdenum in plants and humans.

Author information

1
Institute of Plant Biology, Braunschweig University of Technology, 1 Humboldt Street, 38106 Braunschweig, Germany. r.mendel@tu-bs.de

Abstract

The transition element molybdenum (Mo) needs to be complexed by a special cofactor in order to gain catalytic activity. With the exception of bacterial Mo-nitrogenase, where Mo is a constituent of the FeMo-cofactor, Mo is bound to a pterin, thus forming the molybdenum cofactor Moco, which in different variants is the active compound at the catalytic site of all other Mo-containing enzymes. In eukaryotes, the most prominent Mo-enzymes are nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and the mitochondrial amidoxime reductase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also requires iron, ATP and copper. After its synthesis, Moco is distributed to the apoproteins of Mo-enzymes by Moco-carrier/binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms. In humans, Moco deficiency is a severe inherited inborn error in metabolism resulting in severe neurodegeneration in newborns and causing early childhood death. This article is part of a Special Issue entitled: Cell Biology of Metals.

PMID:
22370186
DOI:
10.1016/j.bbamcr.2012.02.007
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center