Format

Send to

Choose Destination
Food Microbiol. 2012 Jun;30(2):438-47. doi: 10.1016/j.fm.2011.12.020. Epub 2012 Jan 8.

Characterization of the "viable but nonculturable" (VBNC) state in the wine spoilage yeast Brettanomyces.

Author information

1
Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Rue Claude Ladrey, BP 27877, F-21078 Dijon Cedex, France.

Abstract

Although the viable but not culturable (VBNC) state has been studied in detail in bacteria, it has been suggested that maintenance of viability with loss of culturability also exists in eukaryotic cells, such as in the wine spoilage yeast Brettanomyces. To provide conclusive evidence for the existence of a VBNC state in this yeast, we investigated its capacity to become viable and nonculturable after sulfite stress, and its ability to recover culturability after stressor removal. Sulfite addition induced loss of culturability but maintenance of viability. Increasing the medium pH to decrease the concentration of toxic SO(2) allowed yeast cells to become culturable again, thus demonstrating the occurrence of a VBNC state in Brettanomyces upon SO(2) exposure. Relative to culturable Brettanomyces, VBNC yeast cells were found to display a 22% decrease in size on the basis of laser granulometry. Assays for 4-ethylguaiacol and 4-ethylphenol, volatile phenols produced by Brettanomyces, indicated that spoilage compound production could persist in VBNC cells. These morphological and physiological changes in VBNC Brettanomyces were coupled to extensive protein pattern modifications, as inferred by comparative two-dimensional electrophoresis and mass spectrometric analyses. Upon identification of 53 proteins out of the 168 spots whose abundance was significantly modified in treated cells relative to control, we propose that the SO(2)-induced VBNC state in Brettanomyces is characterized by a reduced glycolytic flux coupled to changes in redox homeostatis/protein turnover-related processes. This study points out the existence of common mechanisms between yeast and bacteria upon entry to the VBNC state.

PMID:
22365358
DOI:
10.1016/j.fm.2011.12.020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center