Theoretical and experimental exploration of the energy landscape of the quasi-binary cesium chloride/lithium chloride system

Chemistry. 2012 Mar 19;18(12):3559-65. doi: 10.1002/chem.201103162. Epub 2012 Feb 23.

Abstract

As a case study, the energy landscape of the cesium chloride/lithium chloride system was investigated by combining theoretical and experimental methods. Global optimization for many compositions of this quasi-binary system gave candidates for possible modifications that constitute promising targets for subsequent syntheses based on solid-state reactions. Owing to the synergetic and complementary nature of the computational and experimental approaches, a substantially better efficiency of exploration was achieved. Several new phases were found in this system, for the compositions CsLiCl(2) and CsLi(2)Cl(3), and their thermodynamic ranking with respect to the already-known phases was clarified. In particular, the new CsLiCl(2) modification was shown to be the low-temperature phase, whilst the already-known modification for this composition corresponded to a high-temperature phase. Based on these results, an improved cesium chloride/lithium chloride phase diagram was derived, and this approach points the way to more rational and more efficient solid-state synthesis.